EconPapers    
Economics at your fingertips  
 

Transforming the electricity generation of the Berlin–Brandenburg region, Germany

Caroline Moeller, Jan Meiss, Berit Mueller, Markus Hlusiak, Christian Breyer, Michael Kastner and Jochen Twele

Renewable Energy, 2014, vol. 72, issue C, 39-50

Abstract: We present possible steps for Germany's capital region for a pathway towards high-level renewable energy contributions. To this end, we give an overview of the current energy policy and status of electricity generation and demand of two federal states: the capital city Berlin and the surrounding state of Brandenburg. In a second step we present alternative, feasible scenarios with focus on the years 2020 and 2030. All scenarios were numerically evaluated in hourly time steps using a cost optimisation approach. The required installed capacities in an 80% renewables scenario in the year 2020 consist of 8.8 GW wind energy, 4.8 GW photovoltaics, 0.4 GWel bioenergy, 0.6 GWel methanation and a gas storage capacity of 180 GWhth. In order to meet a renewable electricity share of 100% in 2030, approximately 9.5 GW wind energy, 10.2 GW photovoltaics and 0.4 GWel bioenergy will be needed, complemented by a methanation capacity of about 1.5 GWel and gas storage of about 530 GWhth. In 2030, an additional 11 GWhel of battery storage capacity will be required. Approximately 3 GW of thermal gas power plants will be necessary to cover the residual load in both scenarios. Furthermore, we studied the transmission capacities of extra-high voltage transmission lines in a second simulation and found them to be sufficient for the energy distribution within the investigated region.

Keywords: Energy transition; Energy system simulation; Energy scenarios; Renewable electricity supply; Cost optimisation (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114003826
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:72:y:2014:i:c:p:39-50

DOI: 10.1016/j.renene.2014.06.042

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:72:y:2014:i:c:p:39-50