Experimental investigation of the performance of a liquid fuel-fired porous burner operating on kerosene-vegetable cooking oil (VCO) blends for micro-cogeneration of thermoelectric power
K.F. Mustafa,
S. Abdullah,
M.Z. Abdullah,
K. Sopian and
A.K. Ismail
Renewable Energy, 2015, vol. 74, issue C, 505-516
Abstract:
Studies related to porous burner for thermoelectric (TE) power generation have mainly focused toward achieving a specific range of power output for various applications. However, detailed analyses on the performance and emission aspects of the porous burner are lacking. In addition, physical integration between the burner and TE modules has added further complexity in this research area. Thus, this work aims to comprehend the effects of fuel–air equivalence ratio on the performance and emission characteristics of a liquid fuel-fired porous burner for micro-cogeneration of TE power. A catalytically inert Al2O3 porous medium was incorporated into a liquid fuel-fired porous burner operating on four mixtures of kerosene-vegetable cooking oil (VCO) blends: 100 kerosene, 90/10 KVCO, 75/25 KVCO, and 50/50 KVCO. Ten bismuth-telluride TE cells were arranged in a ten-sided polygon that, together with finned dissipators, formed a TE module electrically connected in series but thermally connected in parallel. The performance aspects at various fuel–air equivalence ratios were thoroughly evaluated with the corresponding temperature profiles, voltage, current, power output, and electrical efficiency. Results indicated that the surface temperature of the porous media was generally higher than the developed and exit flame temperature of the burner. Varying the fuel-air equivalence ratio significantly affected the electrical efficiency, with a maximum and minimum value of 1.94% and 1.10%, respectively. The power output steadily increased in the lean region, but stabilized as the fuel–air equivalence ratio slowly increased beyond the stoichiometric ratio. The CO emission was relatively lower at the lean region; however, significant amount was recorded in the rich combustion region. Moreover, NOx fluctuated between 1 ppm and 4 ppm over the entire range of fuel–air equivalence ratio.
Keywords: Porous burner; Kerosene; Vegetable cooking oil; Thermoelectric; Emission (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811400531X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:74:y:2015:i:c:p:505-516
DOI: 10.1016/j.renene.2014.08.061
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().