Energy harvesting from atmospheric variations – Theory and test
Gibran Ali,
John Wagner,
David Moline and
Todd Schweisinger
Renewable Energy, 2015, vol. 74, issue C, 528-535
Abstract:
The last two decades have offered a dramatic rise in the use of digital technologies such as wireless sensor networks that require small isolated power supplies. Energy harvesting, a method to gather energy from ambient sources including sunlight, vibrations, heat, etc., has provided some success in powering these systems. One of the unexplored areas of energy harvesting is the use of atmospheric temperature variations to obtain usable energy. This paper investigates an innovative device to extract energy from atmospheric variations using ethyl chloride filled mechanical bellows. The apparatus consists of a bellows filled with ethyl chloride working against a spring in a closed and controlled environment. The bellows expand/contract depending upon the ambient temperature and the energy harvested is calculated as a function of the bellows' length. The experiments showed that 6 J of energy may be harvested for a 23 °C change in temperature. The numerical results closely correlated to the experimental data with a deviation of 1%. In regions with high diurnal temperature variation, such an apparatus may yield approximately 250 μW depending on the ambient temperature range.
Keywords: Energy harvesting; Mechatronics; Thermodynamics; Kinetics; Experimental testing (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114004923
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:74:y:2015:i:c:p:528-535
DOI: 10.1016/j.renene.2014.08.033
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().