Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant
Guangdong Zhu,
Ty Neises,
Craig Turchi and
Robin Bedilion
Renewable Energy, 2015, vol. 74, issue C, 815-824
Abstract:
The term integrated solar combined-cycle (ISCC) has been used to define the combination of solar thermal energy into a natural gas combined-cycle (NGCC) power plant. Based on a detailed thermodynamic cycle model for a reference ISCC plant, the impact of solar addition is thoroughly evaluated for a wide range of input parameters such as solar thermal input and ambient temperature. It is shown that solar hybridization into an NGCC plant may give rise to a substantial benefit from a thermodynamic point of view. The work here also indicates that a significant solar contribution may be achieved in an ISCC plant, thus implying substantial fuel savings and environmental benefits.
Keywords: Concentrating solar power; Integrated solar combined cycle; Solar hybridization; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114005436
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:74:y:2015:i:c:p:815-824
DOI: 10.1016/j.renene.2014.08.073
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().