Analytical solution of heat transfer in a shell-and-tube latent thermal energy storage system
Mohammed Bechiri and
Kacem Mansouri
Renewable Energy, 2015, vol. 74, issue C, 825-838
Abstract:
An analytical solution of a latent heat storage unit (LHSU) consisting of a shell-and tube was obtained by using the Exponential Integral Function and the variables separation technique. The working fluid (water) circulating by forced convection inside the inner tube charges and discharges the storage unit. The comparison between analytical predictions and experimental data shows good agreement. Extensive parametric studies were conducted in order to examine the effect of the pertinent parameters (such as natural convection, mass flow rate of HTF, outer tube radius, pipe length etc.) on the melting and solidification processes of paraffin as a PCM. In order to provide guidelines for system performance and design optimisation, unsteady temperature distributions within PCM during melting/solidification, energy stored, position of moving interface and thermal efficiency have been obtained by a series of numerical calculations and represented graphically.
Keywords: Energy storage; Latent heat; Phase change material; Conjugated laminar forced convection; Circular duct (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114005606
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:74:y:2015:i:c:p:825-838
DOI: 10.1016/j.renene.2014.09.010
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().