Synthesis and characterization of graphene-cobalt phthalocyanines and graphene-iron phthalocyanine composites and their enzymatic fuel cell application
Veerappan Mani,
Rajkumar Devasenathipathy,
Shen-Ming Chen,
Jiun-An Gu and
Sheng-Tung Huang
Renewable Energy, 2015, vol. 74, issue C, 867-874
Abstract:
We prepared graphene (GR)-cobalt phthalocyanine (CoPc) and GR-iron phthalocyanine (FePc) composites by simple and facile chemical reduction method for enzymatic fuel cell (EFC) applications. The successful formation of the composites was confirmed by scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction and electrochemical methods. The as-prepared composites were used for the construction of glucose/O2 EFC. The anode of the EFC was prepared by immobilizing glucose oxidase (GOx) at the GR-CoPc composite modified glassy carbon electrode (GCE). GCE/GR-CoPc/GOx exhibited excellent electrocatalytic ability towards oxidation of glucose. In addition, the modified electrode showed appreciable stability, repeatability and reproducibility. GR-FePc composite exhibited superior electrocatalytic ability towards oxygen reduction reaction (ORR). A membraneless glucose/O2 EFC has been fabricated employing GCE/GR-CoPc/GOx and GCE/GR-FePc as anode and cathode respectively. The fabricated EFC offered a maximum power density of 23 μW cm−2 which is comparable with the previously reported EFCs and it exhibited appreciable stability and repeatability. From this study, we infer that GR based MPcs have great potential for the fabrication of EFCs.
Keywords: Graphene; Cobalt phthalocyanine; Iron phthalocyanine; Glucose; Oxygen reduction reaction; Enzymatic fuel cell (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114005539
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:74:y:2015:i:c:p:867-874
DOI: 10.1016/j.renene.2014.09.003
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().