EconPapers    
Economics at your fingertips  
 

Pressure-retarded osmotic power system model considering non-ideal effects

Jonathan Maisonneuve, Pragasen Pillay and Claude B. Laflamme

Renewable Energy, 2015, vol. 75, issue C, 416-424

Abstract: A model for pressure-retarded osmotic (PRO) power systems is described. The model considers several non-ideal phenomena including internal and external concentration polarization, local variation due to mass transfer, pressure losses along membrane surfaces and other losses throughout the system. This provides an overview of many of the major dynamics that must be considered in PRO power modeling. The model is validated by comparison to experimental data available in the literature. The model is used to investigate the effect of feed and draw flow rates, and of hydraulic pressure difference on PRO system performance. These parameters can be controlled by the system operator and can be set so as to minimize competing non-ideal effects. Improvements in net power of up to 7× are observed when best operating parameters are used as opposed to other values used in the literature.

Keywords: Pressure-retarded osmosis; Operating parameters; Osmotic power; Salinity gradient power; Renewable energy (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114006363
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:75:y:2015:i:c:p:416-424

DOI: 10.1016/j.renene.2014.10.011

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:75:y:2015:i:c:p:416-424