EconPapers    
Economics at your fingertips  
 

Corrosion of metals and salt hydrates used for thermochemical energy storage

Aran Solé, Laia Miró, Camila Barreneche, Ingrid Martorell and Luisa F. Cabeza

Renewable Energy, 2015, vol. 75, issue C, 519-523

Abstract: Solar energy can be efficiently used if thermal energy storage systems are accordingly designed to match availability and demand. Thermal energy storage by thermochemical materials (TCM) is very attractive since these materials present a high storage density. Therefore, compact systems can be designed to provide both heating and cooling in dwellings. One of the main drawbacks of the TCM is corrosion with metals in contact. Hence, the objective of this study is to present the obtained results of an immersion corrosion test following ASTM G1 simulating an open TCM reactor, under humidity and temperature defined conditions. Four common metals: copper, aluminum, stainless steel 316, and carbon steel, and five TCM: CaCl2, Na2S, CaO, MgSO4, and MgCl2, were studied. Aluminum and copper show severe corrosion when combined with Na2S, aluminum corrosion is more significant since the specimen was totally destroyed after 3 weeks. Stainless steel 316 is recommended to be used as a metal container material when storing all tested TCM.

Keywords: Corrosion tests; Salt hydrates; Metals; Thermochemical materials (TCM); Thermal energy storage (TES); Building applications (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114006302
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:75:y:2015:i:c:p:519-523

DOI: 10.1016/j.renene.2014.09.059

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:75:y:2015:i:c:p:519-523