Energy management strategy based on receding horizon for a power hybrid system
Diego Feroldi,
Pablo Rullo and
David Zumoffen
Renewable Energy, 2015, vol. 75, issue C, 550-559
Abstract:
This paper presents an energy management strategy to operate a hybrid power system with renewable sources (wind and solar), batteries, and polymeric electrolyte membrane fuel cells. The fuel cells are fed with hydrogen from bioethanol reforming. The energy management strategy uses the concept of receding horizon with predictions of the future generation from the renewable sources, the future load, and the state of charge in the battery bank. Several tests are done in order to analyze the performance of the proposed methodology. The results, compared with the case without predictions, show a reduction in the loss of power supply probability (LPSP) up to 88%.
Keywords: Renewable energy sources; Bioethanol; Wind energy; Solar energy; PEM fuel cells; Autoregressive models (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114006211
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:75:y:2015:i:c:p:550-559
DOI: 10.1016/j.renene.2014.09.056
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().