Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine
Qiang Guo,
Lingjiu Zhou and
Zhengwei Wang
Renewable Energy, 2015, vol. 75, issue C, 640-648
Abstract:
Recent studies have coupled blade element momentum (BEM) theory with the Reynolds Averaged Navier–Stokes equations in computational fluid dynamics (CFD) software, as the BEM-CFD method to analyse the flows in marine current turbines is with much less computational resources. The accuracy of the BEM-CFD calculation was evaluated by analysing the performance and flow field characteristics of an isolated horizontal axis marine current turbine with comparisons to a full rotor geometry simulation and experimental data. The comparisons show that the full rotor geometry simulation gives good predictions near the optimal conditions (TSR = 5–7), but is less accurate for off-design conditions. The BEM-CFD results, which are based on two-dimensional hydrofoil theory, are evaluated using the experimental and numerical lift and drag coefficients. It shows that the two-dimensional lift and drag coefficients had significant effects on the BEM-CFD predictions. Overall, the BEM-CFD based on the numerical hydrofoil data can accurately predict the thrust, but generally overestimates the power. The influence of the lift and drag terms on the BEM-CFD predictions suggest that more reasonable 2D predictions for hydrofoils and the 3D effects should be considered to improve the BEM-CFD accuracy. BEM-CFD can reasonably reflect the circumferential averaged velocity characteristics near the rotor for the optimal condition (TSR = 6) and gets symmetrical features in the wake, but it cannot predict the detailed flow features caused by the finite number of blades due to the limitations of the BEM-CFD method.
Keywords: Marine current turbine; Blade element; BEM-CFD; Full rotor geometry; Wake (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114006740
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:75:y:2015:i:c:p:640-648
DOI: 10.1016/j.renene.2014.10.047
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().