Radiant thermal conversion in 0.53 eV GaInAsSb thermophotovoltaic diode
Yu Wang and
Yi-yi Lou
Renewable Energy, 2015, vol. 75, issue C, 8-13
Abstract:
Based on the developed analytical absorption model for 0.53 eV GaInAsSb alloy and the suggested material parameters, evaluating active layer controlled thermal conversion has been systematically done for both p-on-n and n-on-p configuration in its normal and inverted construction. A universal, spectrum-insensitive optimal doping, Na(d) = 3 × 1017 cm−3, is observed in diode light-doped layer for all concerned configurations. By improving the doping in the light-doped layer, thickness compensation between emitter and base has been observed for normal structures and, for each considered structure, suboptimal structures can be employed by consuming less material to achieve comparable output as that for optimal one. Comparing to GaSb diode, 2–3 fold efficiency enhancement can be expected for low-temperature spectrum illumination, making the concerned device an efficient candidate for low-temperature TPV applications.
Keywords: Thermophotovoltaic; Gallium indium arsenide antimonide; Efficiency (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114005965
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:75:y:2015:i:c:p:8-13
DOI: 10.1016/j.renene.2014.09.031
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().