EconPapers    
Economics at your fingertips  
 

A Coral Reefs Optimization algorithm with Harmony Search operators for accurate wind speed prediction

S. Salcedo-Sanz, A. Pastor-Sánchez, J. Del Ser, L. Prieto and Z.W. Geem

Renewable Energy, 2015, vol. 75, issue C, 93-101

Abstract: This paper introduces a new hybrid bio-inspired solver which combines elements from the recently proposed Coral Reefs Optimization (CRO) algorithm with operators from the Harmony Search (HS) approach, which gives rise to the coined CRO-HS optimization technique. Specifically, this novel bio-inspired optimizer is utilized in the context of short-term wind speed prediction as a means to obtain the best set of meteorological variables to be input to a neural Extreme Learning Machine (ELM) network. The paper elaborates on the main characteristics of the proposed scheme and discusses its performance when predicting the wind speed based on the measures of two meteorological towers located in USA and Spain. The good results obtained in these experiments when compared to naïve versions of the CRO and HS algorithms are promising and pave the way towards the utilization of the derived hybrid solver in other optimization problems arising from diverse disciplines.

Keywords: Short term wind speed prediction; Feature selection; Coral Reefs Optimization; Harmony Search; Extreme learning machines (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114005928
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:75:y:2015:i:c:p:93-101

DOI: 10.1016/j.renene.2014.09.027

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:75:y:2015:i:c:p:93-101