Corrosion of metal containers for use in PCM energy storage
Gerard Ferrer,
Aran Solé,
Camila Barreneche,
Ingrid Martorell and
Luisa F. Cabeza
Renewable Energy, 2015, vol. 76, issue C, 465-469
Abstract:
In recent years, thermal energy storage (TES) systems using phase change materials (PCM) have been widely studied and developed to be applied as solar energy storage units for residential heating and cooling. These systems performance is based on the latent heat due to PCM phase change, a high energy density that can be stored or released depending on the needs. PCM are normally encapsulated in containers, hence the compatibility of the container material with the PCM has to be considered in order to design a resistant container. Therefore, the main aim of this paper is to study the corrosion effects when putting in contact five selected metals (aluminium, copper, carbon steel, stainless steel 304 and stainless steel 316) with four different PCM (one inorganic mixture, one ester and two fatty acid eutectics) to be used in comfort building applications. Results showed corrosion on aluminium specimens. Hence caution must be taken when selecting it as an inorganic salt container. Despite copper has a corrosion rate range of 6–10 mg/cm2 yr in the two fatty acid formulations tested, it could be used as container. Stainless steel 316 and stainless steel 304 showed great corrosion resistance (0–1 mg/cm2 yr) and its use would totally be recommended with any of the studied PCM.
Keywords: Solar energy; Thermal energy storage (TES); Comfort building applications; Phase change materials (PCM); Metal corrosion (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114007514
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:76:y:2015:i:c:p:465-469
DOI: 10.1016/j.renene.2014.11.036
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().