Digital proportional multi-resonant current controller for improving grid-connected photovoltaic systems
Pedro M. Almeida,
Pedro G. Barbosa,
Janaina G. Oliveira,
Jorge L. Duarte and
Paulo F. Ribeiro
Renewable Energy, 2015, vol. 76, issue C, 662-669
Abstract:
This paper presents the modelling and design steps of a digital proportional multi-resonant controller used in a grid-connected photovoltaic (PV) system. It is shown that the use of only one Proportional-Resonant (PR) compensator, tuned to the system fundamental frequency, may have its effectiveness compromised due to nonlinearities in the system components. To overcome this drawback and improve the system's output current waveform, a multi-resonant controller is introduced. The performance of the discrete-time designed controller is tested on a grid-connected photovoltaic power plant. Experimental results obtained with the operation of a 30 kWp PV system connected to a distribution network, using only the leakage inductances of a connection transformer as passive filter are presented and discussed to demonstrate the performance of the designed control strategy.
Keywords: Digital controller; Resonant compensator; Current controller; Grid-connected; Photovoltaic; Discrete-time modeling (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114008180
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:76:y:2015:i:c:p:662-669
DOI: 10.1016/j.renene.2014.11.087
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().