EconPapers    
Economics at your fingertips  
 

Modelling the Swedish wind power production using MERRA reanalysis data

Jon Olauson and Mikael Bergkvist

Renewable Energy, 2015, vol. 76, issue C, 717-725

Abstract: The variability of wind power will be an increasing challenge for the power system as wind penetration grows and thus needs to be studied. In this paper a model for generation of hourly aggregated wind power time series is described and evaluated. The model is based on MERRA reanalysis data and information on wind energy converters in Sweden. Installed capacity during the studied period (2007–2012) increased from around 600 to over 3500 MW. When comparing with data from the Swedish TSO, the mean absolute error in hourly energy was 2.9% and RMS error was 3.8%. The model was able to adequately capture step changes and also yielded a nicely corresponding distribution of hourly energy. Two key factors explaining the good results were the use of a globally optimised power curve smoothing parameter and the correction of seasonal and diurnal bias.

Keywords: Wind power; Physical model; Wind variability; MERRA reanalysis data (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114008167
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:76:y:2015:i:c:p:717-725

DOI: 10.1016/j.renene.2014.11.085

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:76:y:2015:i:c:p:717-725