EconPapers    
Economics at your fingertips  
 

A prototype design model for deep low-enthalpy hydrothermal systems

Sanaz Saeid, Rafid Al-Khoury, Hamidreza M. Nick and Michael A. Hicks

Renewable Energy, 2015, vol. 77, issue C, 408-422

Abstract: This paper introduces a prototype design model for deep low-enthalpy hydrothermal systems. The model predicts, empirically, the lifetime of a hydrothermal system as a function of reservoir porosity, discharge rate, well spacing, average initial temperature of the reservoir, and injection temperature. The finite element method is utilized for this purpose. An extensive parametric analysis on a wide range of physical parameters and operational scenarios, for a typical geometry, has been conducted to derive the model. The proposed model can provide geothermal engineers and decision makers with a preliminary conjecture about the lifetime of a deep low-enthalpy hydrothermal system. The proposed modelling technique can be utilized as a base to derive elaborate models that include more parameters and operational scenarios.

Keywords: Geothermal energy; Deep low-enthalpy hydrothermal system; Geothermal doublet design (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114008441
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:77:y:2015:i:c:p:408-422

DOI: 10.1016/j.renene.2014.12.018

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:77:y:2015:i:c:p:408-422