Enhanced microbial oil production by activated sludge microorganisms from sugarcane bagasse hydrolyzate
Andro Mondala,
Rafael Hernandez,
Todd French,
Magan Green,
Linda McFarland and
Lonnie Ingram
Renewable Energy, 2015, vol. 78, issue C, 114-118
Abstract:
The use of sugarcane bagasse hydrolyzate as a carbon source for enhanced oil production by activated sludge microbial cultures was investigated. Cultivation of raw activated sludge inoculum using pure xylose as carbon source was necessary prior to bagasse hydrolyzate feeding for microbial acclimation to this pentose sugar, the major component of the hydrolyzate. Lipid contents from 40 to 47% (dry cell weight) were achieved under high C:N ratio following bagasse hydrolyzate feeding; however nutrient supplementation was found to be necessary in order to maintain viable cell biomass levels (>10 g/L) to achieve a high lipid titer (7.62 g/L). Hence, a process involving sequential batch feeding of hydrolyzate with and without nutrients was proposed and simulated using the Logistic and Luedeking–Piret models. Analysis of the product lipids showed up to 50% saponifiable fractions and dominance of C16 and C18 fatty acids, demonstrating their suitability as biofuel feedstock.
Keywords: Biomass; Fermentation; Microbial lipids; Biofuels; Activated sludge (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115000075
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:78:y:2015:i:c:p:114-118
DOI: 10.1016/j.renene.2014.12.073
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().