Conversion of cassava rhizome using an in-situ catalytic drop tube reactor for fuel gas generation
Panchaluck Sornkade,
Duangduen Atong and
Viboon Sricharoenchaikul
Renewable Energy, 2015, vol. 79, issue C, 38-44
Abstract:
The air-gasification of cassava rhizome mixed with Ni/α-Al2O3 catalyst in a drop tube reactor for production of fuel gas was carried out in this work. The conversion was performed at different temperatures from 873 to 1073 K, equivalence ratio (ER) of 0.2–0.6, and semi-continuous feeding of raw material for 30 min. Gas yields, cold gas efficiency (CGE) and lower heating value of fuel gas (LHV) were compared with non-catalytic cases. Generally, higher temperature and ER significantly improved the performance of cassava rhizome gasification. Similar for both of non-catalytic and catalytic cases, at optimum temperature of 1073 K and ER of 0.6, the maximum gas yields were closed to 80% while yields of char and tar were kept minimal at 4% and 11%, respectively. Addition of prepared catalysts resulted in greater CGE and LHV of 92% and 8.6 MJ/N m3, respectively, comparing to the non-catalytic case of 61% and 6.36 MJ/N m3, respectively. Moreover, the measured gas distribution data were comparable with the result obtained from thermodynamics conversion model based on minimization of Gibbs free energy of product gases using elemental composition of cassava rhizome (C3.13H5.2O3.52N0.03S0.04.) constrained by mass and energy balances for the system. As a result, the gas product distribution and characteristics obtained from this experimental implied its suitability for heat and power applications.
Keywords: Cassava rhizome; Gasification; Gibbs free energy; Thermodynamic equilibrium (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114004418
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:79:y:2015:i:c:p:38-44
DOI: 10.1016/j.renene.2014.07.043
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().