EconPapers    
Economics at your fingertips  
 

Experimental investigation of the performance of the solar tunnel dryer for drying bananas

P. Schirmer, S. Janjai, A. Esper, R. Smitabhindu and W. Mühlbauer

Renewable Energy, 1996, vol. 7, issue 2, 119-129

Abstract: The multi-purpose solar tunnel dryer was used to dry bananas under the hot and humid weather conditions of Thailand in order to investigate its performance. The dryer comprises a plastic sheet-covered flat plate collector and a drying tunnel. The dryer is arranged to supply hot air directly to the drying tunnel using three fans powered by a 53 W solar cell module. The products to be dried are spread in one layer on a plastic net in the drying tunnel to receive energy from both the hot air supplied by the collector and incident solar radiation. This dryer can be used to dry up to 300 kg of ripe bananas in each drying batch. In investigating the performance of the dryer, seven drying tests were conducted at the Royal Chitralada Projects in Bangkok during March–May 1995. Teh temperature of the drying air from the collector varied between 40 and 65°C during drying and the bananas could be dried within 3–5 days, compared to the 5–7 days needed for natural Sun drying. In addition, the bananas being dried in the solar tunnel dryer were completely protected from rain, insects and dust, and the dried bananas were of high quality in terms of flavour, colour and texture. As the fans are powered by the solar module, the dryer could be used in rural areas where there is no supply of electricity from grid. The pay-back period of the dryer is estimated to be about 3 years when the dryer is locally produced.

Date: 1996
References: View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0960148195001387
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:7:y:1996:i:2:p:119-129

DOI: 10.1016/0960-1481(95)00138-7

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:7:y:1996:i:2:p:119-129