Thermodynamic analysis and reaction routes of steam reforming of bio-oil aqueous fraction
K.A. Resende,
C.N. Ávila-Neto,
R.C. Rabelo-Neto,
F.B. Noronha and
C.E. Hori
Renewable Energy, 2015, vol. 80, issue C, 166-176
Abstract:
Steam reforming of the bio-oil aqueous fraction is a potential process to produce hydrogen. Therefore, to perform a thermodynamic study of this process can be interesting to determine the most favorable operating conditions. The calculations were made using a model compound and an aqueous fraction of a specific bio-oil. The data were obtained at different temperatures and for different steam(S)/fuel(F)ratios. Thermodynamic data showed that the behavior of model compounds was very similar to the one observed for the aqueous fraction of bio-oil. Therefore, acetic acid was used as a model compound of the aqueous fraction of bio-oil in the experimental tests. Temperature-programmed acetic acid desorption, temperature programmed reaction and steam reforming reactions were conducted. The experimental results were correlated with data predicted by thermodynamic analyses. There was a good correlation between the experimental results and predicted by equilibrium calculations. It helped to clarify the possible reactions pathways that are present in the reform process studied. According to the results the steam reforming of acetic acid can follow two different routes: (i) acetic acid can be converted to acetone at intermediate temperatures or (ii) acetic acid is transformed into adsorbed acetate species (CH3COO*) followed by decomposition into acetyl species (CH3CO*).
Keywords: Equilibrium; Aqueous fraction of bio-oil; Acetol; Acetic acid (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115000750
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:80:y:2015:i:c:p:166-176
DOI: 10.1016/j.renene.2015.01.057
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().