Higher ground source heat pump COP in a residential building through the use of solar thermal collectors
Aymeric Girard,
Eulalia Jadraque Gago,
Tariq Muneer and
Gustavo Caceres
Renewable Energy, 2015, vol. 80, issue C, 26-39
Abstract:
This article investigates the feasibility of achieving higher performance from ground-source heat-pumps (GSHP) in space heating mode through the use of solar thermal collectors. A novel simulation tool for solar-assisted ground-source heat-pumps (SGSHP) is presented with an analysis of the influence of solar collectors on the improvement of heat pump performance. Solar radiation and climate temperature data of 19 European cities were used to perform simulations of SGSHP and GSHP systems considering a typical residential house. Overall performance coefficients (COPsys) varied from northern to southern locations between 4.4 and 5.8 for SGSHP and between 4.3 and 5.1 for GSHP. Results show that solar collectors coupling has more impact on performance improvement in regions that benefit from higher irradiance. However, greater running cost savings are achieved in milder climate conditions. Both heat-pump systems are able to effectively contribute to carbon footprint reductions for residential buildings, especially in countries where fossil fuels are the primary source of electricity generation. SGSHP payback periods are found between 8.5 and 23 years from northern to southern localities, making such heating system an economic heating option. SGSHPs are best suited for high irradiance and cool climate locations such as the mountainous regions in southern Europe.
Keywords: Ground-source heat pump; Solar-assisted ground-source heat pump; Building space heating; Energy efficiency; Model simulation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115000816
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:80:y:2015:i:c:p:26-39
DOI: 10.1016/j.renene.2015.01.063
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().