Forecasting wind power quantiles using conditional kernel estimation
James W. Taylor and
Jooyoung Jeon
Renewable Energy, 2015, vol. 80, issue C, 370-379
Abstract:
The efficient management of wind farms and electricity systems benefit greatly from accurate wind power quantile forecasts. For example, when a wind power producer offers power to the market for a future period, the optimal bid is a quantile of the wind power density. An approach based on conditional kernel density (CKD) estimation has previously been used to produce wind power density forecasts. The approach is appealing because: it makes no distributional assumption for wind power; it captures the uncertainty in forecasts of wind velocity; it imposes no assumption for the relationship between wind power and wind velocity; and it allows more weight to be put on more recent observations. In this paper, we adapt this approach. As we do not require an estimate of the entire wind power density, our new proposal is to optimise the CKD-based approach specifically towards estimation of the desired quantile, using the quantile regression objective function. Using data from three European wind farms, we obtained encouraging results for this new approach. We also achieved good results with a previously proposed method of constructing a wind power quantile as the sum of a point forecast and a forecast error quantile estimated using quantile regression.
Keywords: Wind power; Quantiles; Conditional kernel estimation; Quantile regression (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115001123
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:80:y:2015:i:c:p:370-379
DOI: 10.1016/j.renene.2015.02.022
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().