The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood
Michael Somerville and
Sharif Jahanshahi
Renewable Energy, 2015, vol. 80, issue C, 471-478
Abstract:
Charcoal produced from sustainably grown biomass can be used to reduce the net CO2 emissions from iron and steel making operations. However careful control of pyrolysis conditions is required to produce charcoal with the necessary properties to optimise substitution for coal and coke in specific applications. The density of charcoal is an important property to control in order to minimise transport and handling costs as well as control of charcoal reactivity and strength.
Keywords: Pyrolysis; Biomass; Compression; Charcoal; Density; Temperature (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115001032
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:80:y:2015:i:c:p:471-478
DOI: 10.1016/j.renene.2015.02.013
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().