Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system
Akbar Maleki,
Mehran Ameri and
Farshid Keynia
Renewable Energy, 2015, vol. 80, issue C, 552-563
Abstract:
In this paper, a network-independent pattern has been used to design a hybrid (PV/wind/Batt) system with high reliability and minimum production total costs over the life of the system. In such systems, optimum sizing is the main issue for having a cost-effective system. In this regard, studies the performance of different PSO (particle swarm optimization algorithm) variants to determine the optimum sizing of hybrid (PV/wind/Batt) system, namely, PSO, modified PSO (MPSO), PSO based on repulsion factor (PSO-RF), PSO with constriction factor (PSO-CF), and PSO with adaptive inertia weight (PSO-W). The system's components optimal size has been studied under various performance conditions using real-time information and meteorological data of one of three atypical regions located in Iran. Simulation results indicate that PSO-CF produces more promising results than the other variants, tabu search (TS), simulated annealing (SA) and harmony search (HS) algorithms in terms of mean (Mean), standard deviation (Std.), worst (Worst) and best (Best) the total annual cost (TAC).
Keywords: Hybrid system; Optimum sizing; Multifarious optimization; Particle swarm optimization (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (48)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115001615
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:80:y:2015:i:c:p:552-563
DOI: 10.1016/j.renene.2015.02.045
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().