On the design and tuning of linear model predictive control for wind turbines
Achin Jain,
Georg Schildbach,
Lorenzo Fagiano and
Manfred Morari
Renewable Energy, 2015, vol. 80, issue C, 664-673
Abstract:
This paper presents a study on the design of linear model predictive control (MPC) for wind turbines, with a focus on the controller's tuning tradeoffs. A continuously linearized MPC approach is described and applied to control a 3-bladed, horizontal axis, variable speed wind turbine. The tuning involves a multiobjective cost function so that the performance can be optimized with respect to five defined measures: power variation, pitch usage, tower displacement, drivetrain twist and frequency of violating the nominal power limit. A tuning approach based on the computation of sensitivity tables is proposed and tested via numerical simulations using a nonlinear turbine model. The paper further compares the performance of the MPC controller with that of a conventional one.
Keywords: Wind energy; Wind turbines; Model predictive control; Sensitivity analysis; Control system tuning (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115001731
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:80:y:2015:i:c:p:664-673
DOI: 10.1016/j.renene.2015.02.057
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().