EconPapers    
Economics at your fingertips  
 

Experimental study of characteristics of bimetallic Pt–Fe nano-particle fuel cell electrocatalyst

Jun Yao and Yufeng Yao

Renewable Energy, 2015, vol. 81, issue C, 182-196

Abstract: The characteristics of 1.5 wt% Platinum (Pt) loading on Fe incorporated Y zeolite (Pt–Fe/Y zeolite) nano-electrocatalysts have been experimentally studied by the extended X-ray adsorption fine structure (EXAFS) and cyclic voltammetry (CV) techniques using Nafion@ bound electrode to determine Pt electrocatalytic performance in direct methanol fuel cell. The Pt particle size was found to be small in electrochemical environment (0.7 nm with 55 atoms). Study implies that the Pt electrocatalytic performance can be affected by the Pt cluster electron deficiency, due to the change of Pt particle size associated with the lattice strain energy. The CV measurement in the hydride region indicated higher Pt dispersion for Pt–Fe/Y zeolite electrocatalyst chemically reduced in H2 at 400 °C (15PtFeancr4), compared to that of Pt/Y zeolite reduced at 400 °C (15Ptancr4) and Pt–Fe/Y zeolite electrocatalysts reduced at 300 °C (15PtFeancr3), respectively. This provided further implication that the chemical reduction temperature would be important for achieving a higher Pt dispersion. The present study has revealed two possible electron transfer pathways that might contribute to the Pt electronic conduction: (1) the surface mobility of adsorbed species; (2) the hydrogen atoms/H+ ion spillover through the zeolite framework and on the electrode surface, despite the DC insulator nature of zeolite.

Keywords: Bimetallic nano-particle fuel cell; Pt–Fe/Y zeolite; Electrocatalytic performance; Bonding distance; Extended X-ray adsorption fine structure; Cyclic voltammetry (CV) (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811500213X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:81:y:2015:i:c:p:182-196

DOI: 10.1016/j.renene.2015.03.031

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:81:y:2015:i:c:p:182-196