EconPapers    
Economics at your fingertips  
 

Local models-based regression trees for very short-term wind speed prediction

A. Troncoso, S. Salcedo-Sanz, C. Casanova-Mateo, J.C. Riquelme and L. Prieto

Renewable Energy, 2015, vol. 81, issue C, 589-598

Abstract: This paper evaluates the performance of different types of Regression Trees (RTs) in a real problem of very short-term wind speed prediction from measuring data in wind farms. RT is a solidly established methodology that, contrary to other soft-computing approaches, has been under-explored in problems of wind speed prediction in wind farms. In this paper we comparatively evaluate eight different types of RTs algorithms, and we show that they are able obtain excellent results in real problems of very short-term wind speed prediction, improving existing classical and soft-computing approaches such as multi-linear regression approaches, different types of neural networks and support vector regression algorithms in this problem. We also show that RTs have a very small computation time, that allows the retraining of the algorithms whenever new wind speed data are collected from the measuring towers.

Keywords: Wind speed prediction; Very short-term forecasting horizon; Regression trees (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115002530
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:81:y:2015:i:c:p:589-598

DOI: 10.1016/j.renene.2015.03.071

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:81:y:2015:i:c:p:589-598