EconPapers    
Economics at your fingertips  
 

Lightweight current collector based on printed-circuit-board technology and its structural effects on the passive air-breathing direct methanol fuel cell

Wei Yuan, Xiaoqing Zhang, Shiwei Zhang, Jinyi Hu, Zongtao Li and Yong Tang

Renewable Energy, 2015, vol. 81, issue C, 664-670

Abstract: To realize lightweight design of the fuel cell system is a critical issue before it is put into practical use. The printed-circuit-board (PCB) technology can be potentially used for production of current collectors or flow distributors. This study develops prototypes of a single passive air-breathing direct methanol fuel cell (DMFC) and also an 8-cell mono-polar DMFC stack based on PCB current collectors. The effects of diverse structural and operational factors on the cell performance are explored. Results show that the methanol concentration of 6 M promotes a higher cell performance with a peak power density of 18.3 mW cm−2. The combination of current collectors using a relatively higher anode open ratio and inversely a lower cathode open ratio helps enhance the cell performance. Dynamic tests are also conducted to reveal transient behaviors and its dependence on the operating conditions. To validate the real working status of the DMFC stack, it is coupled with an LED lightening system. The performance of this hybrid system is also reported in this study.

Keywords: Direct methanol fuel cell; Passive; Air-breathing; Current collector; Printed circuit board; Mono-polar stack (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115002736
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:81:y:2015:i:c:p:664-670

DOI: 10.1016/j.renene.2015.03.082

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:81:y:2015:i:c:p:664-670