Continuous flow solar thermal pasteurization of drinking water: Methods, devices, microbiology, and analysis
J.P. Abraham,
B.D. Plourde and
W.J. Minkowycz
Renewable Energy, 2015, vol. 81, issue C, 795-803
Abstract:
The ability to simply and robustly pasteurize drinking water would present tremendous worldwide human health benefits. Ingestion of unsafe drinking water is a leading cause of sickness and death in the developing world. A simple method to use concentrated solar power is presented here with two complimentary numerical models. The first model allows a prediction of water temperatures within the concentrator and enables a user to vary operating parameters to assess the impact on the temperatures. The second model relates the temperatures to pathogen inactivation kinetics so that predictions of pathogen populations can be made. It is found that with a modest size system that includes a parabolic trough concentrator, a thermally activated valve, and a fluid-to-fluid heat exchanger, near complete pathogen inactivation can be achieved. Comparisons are made between simulated and experimentally determined temperatures. The comparison demonstrates the veracity of the model.
Keywords: Thermal pasteurization; Solar concentration; Clean water; Renewable energy (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115002773
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:81:y:2015:i:c:p:795-803
DOI: 10.1016/j.renene.2015.03.086
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().