Economic droop parameter selection for autonomous microgrids including wind turbines
Morad M.A. Abdelaziz and
E.F. El-Saadany
Renewable Energy, 2015, vol. 82, issue C, 108-113
Abstract:
Droop control is a key strategy for operating islanded microgrid systems. The droop settings of the different distributed generation (DG) units in an islanded microgrid determine the operational characteristics of the island. This paper presents an algorithm for choosing the optimal droop parameters for islanded microgrids with wind generation in order to minimize the overall island generation costs in the absence of a microgrid central controller (MGCC). A detailed microgrid model is adopted to reflect the special features and operational characteristics of droop controlled islanded microgrid systems. The proposed problem formulation considers the power flow constraints, voltage and frequency regulation constraints, line capacity constraints and unit capacity constraints. Numerical case studies have been carried out to show the effectiveness of the proposed algorithm as compared to conventional droop parameter selection criteria typically adopted in the literature.
Keywords: Distributed generation (DG); Droop-control; Generation economics; Islanded microgrids; Wind generation (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148114005898
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:82:y:2015:i:c:p:108-113
DOI: 10.1016/j.renene.2014.09.024
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().