MPPT strategy based on speed control for AWS-based wave energy conversion system
Mostafa I. Marei,
Mohamed Mokhtar and
Ahmed A. El-Sattar
Renewable Energy, 2015, vol. 83, issue C, 305-317
Abstract:
One of the attractive direct-drive wave energy conversion systems is the Archimedes Wave Swing (AWS) coupled to a Linear Permanent Magnet Synchronous Generator (LPMSG). This paper presents an integrated control strategy for the back-to-back converter interfacing the LPMSG not only to extract the maximum power from the wave, but also to ride-through the fault. The proposed maximum power tracking technique is based on speed sensorless control of the LPMSG. The unscented Kalman filter is adapted to estimate the translator velocity. The optimal velocity is obtained from the instantaneous active power at the generator terminals. Moreover, a low-voltage ride-through control is integrated to satisfy the grid-code requirements by injecting reactive current during grid disturbances. The generated active power at the fault instant is considered in determining the dynamic reactive power injection to not exceed the ratings of the grid-side converter. The superiority of the proposed strategy is the result of its ability to regulate the translator velocity that generates optimum power. Numerical simulations are conducted to evaluate the dynamic performance of the proposed integrated optimal strategy. Besides, it has been shown that the proposed methodology outdoes others by the decreased power fluctuations which leads to a reduction of the converter size.
Keywords: Archimedes wave swing; Estimation; Low voltage ride-through; Maximum power point tracking; Wave energy conversion system (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115003195
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:83:y:2015:i:c:p:305-317
DOI: 10.1016/j.renene.2015.04.039
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().