EconPapers    
Economics at your fingertips  
 

Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid

Yijie Tong, Jinhyun Kim and Honghyun Cho

Renewable Energy, 2015, vol. 83, issue C, 463-473

Abstract: An enclosed-type evacuated U-tube solar collector (EEUSC) with high efficiency and low cost was designed and constructed. A copper fin was employed in the U-tube to assume a constant heat flux. The thermal performance of the EEUSC was evaluated under a wide range of operating conditions. Moreover, to increase the heat transfer efficiency in the U-tube over the thermal resistance of the air gap, a novel method was developed, which entailed filling the gap with high-thermal-conductivity liquid. Multi-walled carbon nanotube (MWCNT) nanofluid was used as the working fluid. Evaluation results showed that the efficiency of the EEUSC is influenced primarily by the air gap and that it increases by 4% with the use of the MWCNT nanoliquid. Calculations based on this improvement revealed that the annual CO2 and SO2 emissions will reduce by 1600 kg and 5.3 kg, respectively, when 50 solar collectors are employed.

Keywords: Apparent conductance; Solar collector; U-tube; Heat transfer; Nanofluid (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115003225
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:83:y:2015:i:c:p:463-473

DOI: 10.1016/j.renene.2015.04.042

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:463-473