Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems
André Malheiro,
Pedro M. Castro,
Ricardo M. Lima and
Ana Estanqueiro
Renewable Energy, 2015, vol. 83, issue C, 646-657
Abstract:
In this paper we address the optimal sizing and scheduling of isolated hybrid systems using an optimization framework. The hybrid system features wind and photovoltaic conversion systems, batteries and diesel backup generators to supply electricity demand. A Mixed-Integer Linear Programming formulation is used to model system behavior over a time horizon of one year, considering hourly changes in both the availability of renewable resources and energy demand. The optimal solution is achieved with respect to the minimization of the levelized cost of energy (LCOE) over a lifetime of 20 years. Results for a case study show that the most economical solution features all four postulated subsystems.
Keywords: LCOE; Isolated hybrid systems; Sizing optimization; Renewable energies (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (59)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115003559
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:83:y:2015:i:c:p:646-657
DOI: 10.1016/j.renene.2015.04.066
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().