EconPapers    
Economics at your fingertips  
 

Wind speed forecast correction models using polynomial neural networks

Ladislav Zjavka

Renewable Energy, 2015, vol. 83, issue C, 998-1006

Abstract: Accurate short-term wind speed forecasting is important for the planning of a renewable energy power generation and utilization, especially in grid systems. In meteorology it is usual to improve the forecasts by means of some post-processing methods using local measurements and weather prediction model outputs. Neural networks, trained with local real data observations can improve short-term wind speed forecasts with respect to meso-scale numerical meteorological model outcomes of the same data types in the majority of cases. Large-scale forecast models are based on the numerical integration of differential equation systems, which can describe atmospheric circulation processes on account of global meteorological observations. Several layer 3D complex models, which involve a large number of matrix variables, cannot exactly describe conditions near the ground, highly influenced by a landscape relief, coast, structure and other factors. Polynomial neural networks can form and solve general differential equations, which allow to model real complex systems by means of substitution derivative term sum series. The proposed adaptive method forms a correction function according to real observations and consequently applies forecasts to revise a desired prognosis in a selected locality.

Keywords: Wind speed; Correction model; Polynomial neural network; General differential equation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115003341
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:83:y:2015:i:c:p:998-1006

DOI: 10.1016/j.renene.2015.04.054

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:998-1006