Wind speed forecast correction models using polynomial neural networks
Ladislav Zjavka
Renewable Energy, 2015, vol. 83, issue C, 998-1006
Abstract:
Accurate short-term wind speed forecasting is important for the planning of a renewable energy power generation and utilization, especially in grid systems. In meteorology it is usual to improve the forecasts by means of some post-processing methods using local measurements and weather prediction model outputs. Neural networks, trained with local real data observations can improve short-term wind speed forecasts with respect to meso-scale numerical meteorological model outcomes of the same data types in the majority of cases. Large-scale forecast models are based on the numerical integration of differential equation systems, which can describe atmospheric circulation processes on account of global meteorological observations. Several layer 3D complex models, which involve a large number of matrix variables, cannot exactly describe conditions near the ground, highly influenced by a landscape relief, coast, structure and other factors. Polynomial neural networks can form and solve general differential equations, which allow to model real complex systems by means of substitution derivative term sum series. The proposed adaptive method forms a correction function according to real observations and consequently applies forecasts to revise a desired prognosis in a selected locality.
Keywords: Wind speed; Correction model; Polynomial neural network; General differential equation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115003341
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:83:y:2015:i:c:p:998-1006
DOI: 10.1016/j.renene.2015.04.054
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().