Inspection and Structural Health Monitoring techniques for Concentrated Solar Power plants
Mayorkinos Papaelias,
Liang Cheng,
Maria Kogia,
Abbas Mohimi,
Vassilios Kappatos,
Cem Selcuk,
Louis Constantinou,
Carlos Quiterio Gómez Muñoz,
Fausto Pedro Garcia Marquez and
Tat-Hean Gan
Renewable Energy, 2016, vol. 85, issue C, 1178-1191
Abstract:
Parabolic trough concentrators are the most widely deployed type of solar thermal power plant. The majority of parabolic trough plants operate up to 400 °C. However, recent technological advances involving molten salts instead of oil as working fluid the maximum operating temperature can exceed 550 °C. CSP plants face several technical problems related to the structural integrity and inspection of critical components such as the solar receivers and insulated piping of the coolant system. The inspection of the absorber tube is very difficult as it is covered by a cermet coating and placed inside a glass envelope under vacuum. Volumetric solar receivers are used in solar tower designs enabling increased operational temperature and plant efficiency. However, volumetric solar receiver designs inherently pose a challenging inspection problem for maintenance engineers due to their very complex geometry and characteristics of the materials employed in their manufacturing. In addition, the rest of the coolant system is insulated to minimise heat losses and therefore it cannot be inspected unless the insulation has been removed beforehand. This paper discusses the non-destructive evaluation techniques that can be employed to inspect solar receivers and insulated pipes as well as relevant research and development work in this field.
Keywords: Concentrated Solar Power (CSP); Non-destructive evaluation (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115301683
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:85:y:2016:i:c:p:1178-1191
DOI: 10.1016/j.renene.2015.07.090
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().