An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands
A.G.R. Vaz,
B. Elsinga,
W.G.J.H.M. van Sark and
M.C. Brito
Renewable Energy, 2016, vol. 85, issue C, 631-641
Abstract:
In order to perform predictions of a photovoltaic (PV) system power production, a neural network architecture system using the Nonlinear Autoregressive with eXogenous inputs (NARX) model is implemented using not only local meteorological data but also measurements of neighbouring PV systems as inputs. Input configurations are compared to assess the effects of the different inputs. The added value of the information of the neighbouring PV systems has demonstrated to further improve the accuracy of predictions for both winter and summer seasons. Additionally, forecasts up to 1 month are tested and compared with a persistence model. Normalized root mean square errors (nRMSE) ranged between 9% and 25%, with the NARX model clearly outperforming the persistence model for forecast horizons greater than 15 min.
Keywords: Photovoltaics; Artificial neural network; NARX model; Time series; Forecasting (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115300847
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:85:y:2016:i:c:p:631-641
DOI: 10.1016/j.renene.2015.06.061
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().