A seasonal cold storage system based on separate type heat pipe for sustainable building cooling
Chengchu Yan,
Wenxing Shi,
Xianting Li and
Shengwei Wang
Renewable Energy, 2016, vol. 85, issue C, 880-889
Abstract:
Seasonal cold storage is a high-efficient and environmental-friendly technique that uses the stored natural cold energy in winter (e.g., snow, ice or cold ambient air) for free-cooling in summer. This paper presents a seasonal cold storage system that uses separate type heat pipes to charge the cold energy from ambient air in winter automatically, without consuming any energy. The charged cold energy is stored in the form of ice in an insulated tank and is extracted as chilled water for cooling supply in summer, which help to reduce the chiller running time and reduce the associated electricity consumption and greenhouse gas emission significantly. A quasi-steady two-dimensional mathematical model of the system is developed for characterizing the dynamic performance of ice growth (i.e., cold charging). The model is validated using the field measurement data from an ice charging experiment conducted in Beijing. The impacts of various affecting factors, including the weather data and the key parameters of heat pipes, on the charging performance of the cold storage system are analyzed. The effectiveness and sustainability of the proposed system for cooling are demonstrated through a case study of a kindergarten building in Beijing.
Keywords: Seasonal cold storage; Ice storage; Heat pipe; Renewable energy; Sustainable cooling (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115301191
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:85:y:2016:i:c:p:880-889
DOI: 10.1016/j.renene.2015.07.023
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().