Modelling and prediction of bioethanol production from intermediates and byproduct of sugar beet processing using neural networks
Jovana Grahovac,
Aleksandar Jokić,
Jelena Dodić,
Damjan Vučurović and
Siniša Dodić
Renewable Energy, 2016, vol. 85, issue C, 953-958
Abstract:
The aim of this work was to model and predict the process of bioethanol production from intermediates and byproduct of sugar beet processing by applying artificial neural networks. Prediction of one substrate fermentation by neural networks had the same input variables (fermentation time and starting sugar content) and one output value (ethanol content, yeast cell number or sugar content). Results showed that a good prediction model could be obtained by networks with single hidden layer. The neural network configuration that gave the best prediction for raw or thin juice fermentation was one with 8 neurons in hidden layer for all observed outputs. On the other side, the optimal number of neurons in hidden layer was found to be 9 and 10 for thick juice and molasses, respectively. Further, all substrates data were merged, which led to introducing an additional input (substrate type) and defining all outputs optimal network architecture to 3-12-1. From the results the conclusion was that artificial neural networks are a good prediction tool for the selected network outputs. Also, these predictive capabilities allowed the application of the Garson's equation for estimating the contribution of selected process parameters on the defined outputs with satisfactory accuracy.
Keywords: Ethanol; Sugar beet; Yeast; Neural networks; Garson equation; Modelling (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811530149X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:85:y:2016:i:c:p:953-958
DOI: 10.1016/j.renene.2015.07.054
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().