Climate-responsive thermal mass design for Pacific Northwest sunspaces
Alexandra R. Rempel,
Alan W. Rempel,
Kenneth R. Gates and
Barbara Shaw
Renewable Energy, 2016, vol. 85, issue C, 981-993
Abstract:
Thermal mass is essential in passive solar spaces designed to store heat. Given the diversity of climates with useful cool-season sun, climate-responsiveness in thermal mass design might be expected; however, rules developed in the dry, sunny American Southwest dominate teaching and practice throughout the country. Evidence from the UK, Alaska, and western Oregon now suggest that conventional thermal mass rules require substantial revision for rainy, cloudy climates. To address this issue, we here employ a series of field-validated Pacific Northwest sunspace models to quantify limitations of conventional thermal mass design in the region and to reveal more suitable parameters with respect to the sizing and ground configuration of floor-based thermal mass. Results favored thermal mass in far smaller quantities, and with much-reduced ground contact, than specified by conventional rules, with optimal parameters varying by design priority: daytime warmth, evening warmth, or early-morning warmth. A subsequent field test confirmed model predictions and elucidated underlying mechanisms, supporting specific revisions of contemporary passive solar design guidelines for the Pacific Northwest and related West Coast Marine climates.
Keywords: Climate-responsive design; Thermal mass; Passive solar heating; Sunspace; Pacific Northwest; EnergyPlus (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115301233
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:85:y:2016:i:c:p:981-993
DOI: 10.1016/j.renene.2015.07.027
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().