EconPapers    
Economics at your fingertips  
 

Sugar production from wheat straw biomass by alkaline extrusion and enzymatic hydrolysis

Michelle Cardoso Coimbra, Aleta Duque, Felicia Saéz, Paloma Manzanares, Crispin Humberto Garcia-Cruz and Mercedes Ballesteros

Renewable Energy, 2016, vol. 86, issue C, 1060-1068

Abstract: One characteristic necessary to make ethanol production from biomass economically feasible is to optimize enzymatic dosage, since enzymes production is expensive. This work investigated the efficacy of different enzymes dosages and solid loadings on wheat straw enzymatic hydrolysis, aimed at obtaining process conditions that lead to good sugars yields from pretreated material. Alkaline extrusion was employed as pretreatment at 70 °C and 10% NaOH solution (w/v). Enzymatic hydrolysis was performed at 5, 10, 15 and 20% solids loading (w/v). Enzyme doses ranged from 6.92 to 20 FPU/g of glucan. Cellulase was also supplemented with xylanase at various proportions. Alkaline extrusion provided a substrate easier to hydrolyze than untreated material. Even the assay with the lowest enzyme dosage (6.92 FPU) achieved a good carbohydrate hydrolysis yield in relation to the theoretical; the glucose yield was 73.8% and xylose yield was 82.8%. A medium containing 100 g/L of fermentable sugar was obtained at 20% solids loading (w/v) and 20 FPU/g of glucan. The supplementation of cellulase with xylanase at U to FPU activity ratio of 3.11:1 improved the glucose yield about 21% over the assay with no xylanase.

Keywords: Cellulase supplementation; Enzymatic hydrolysis; Ethanol; Extrusion; Lignocellulose; Xylanase (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115303062
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:86:y:2016:i:c:p:1060-1068

DOI: 10.1016/j.renene.2015.09.026

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:1060-1068