Optimizing front metallization patterns: Efficiency with aesthetics in free-form solar cells
Deepak K. Gupta,
Matthijs Langelaar,
Marco Barink and
Fred van Keulen
Renewable Energy, 2016, vol. 86, issue C, 1332-1339
Abstract:
Free-form solar cells are cells of unconventional shapes (e.g. hexagonal, leaf-shaped etc). Their flexible shape adds to the aesthetics of the surroundings as well as allows to place them over objects where conventional solar cells might not fit. Evidently, these cells need to be efficient as well, and one of the important factors that controls their performance is the front metallization design. In this paper, we present the application of topology optimization (TO) to optimize the front metallization patterns for free-form solar cells. TO distributes the electrode material on the solar cell front surface in an efficient manner, such that the total power output is maximized. To demonstrate the capability of the proposed methodology, we use it to optimize front metal grids for several complex solar cell shapes e.g. circular, hexagonal, leaf-shaped, motorbike fairings, etc. The results presented here demonstrate the capability of TO to generate efficient designs for these free-form shapes.
Keywords: Front metallization; Free-form; Solar cells; Topology optimization; Optimal design (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115303505
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:86:y:2016:i:c:p:1332-1339
DOI: 10.1016/j.renene.2015.09.071
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().