Experimental investigation of a domestic solar water heater with solar collector coupled phase-change energy storage
H. Sheng Xue
Renewable Energy, 2016, vol. 86, issue C, 257-261
Abstract:
Phase change materials (PCMs) have good properties such as high thermal capacity and constant phase change temperature. Their potential use in solar energy storage is promising. Tests of exposure and constant flow rate are performed to investigate the thermal performance of a domestic solar water heater with solar collector coupled phase-change energy storage (DSWHSCPHES). Due to the low thermal conductivity and high viscosity of PCM, heat transfer in the PCM module is repressed. The thermal performance of the DSWHSCPHES under exposure is inferior to that of traditional water-in-glass evacuated tube solar water heaters (TWGETSWH) with an identical collector area. DSWHSCPHES also performs more efficiently with a constant flow rate than under the condition of exposure. Radiation and initial water temperature have impacts on system performance; with the increase of proportion of diffuse to global radiation and/or initial water temperature, system performance deteriorates and vice versa.
Keywords: Constant flow rate; Exposure; Thermal energy storage; Domestic solar water heater; All-glass evacuated tubular solar collector; System efficiency (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115302172
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:86:y:2016:i:c:p:257-261
DOI: 10.1016/j.renene.2015.08.017
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().