EconPapers    
Economics at your fingertips  
 

A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction

Fernando Jaramillo-Lopez, Godpromesse Kenne and Francoise Lamnabhi-Lagarrigue

Renewable Energy, 2016, vol. 86, issue C, 38-48

Abstract: In this paper, an adaptive control scheme for maximum power point tracking of stand-alone PMSG wind turbine systems (WTS) is presented. A novel procedure to estimate the wind speed is derived. To achieve this, a neural network identifier (NNI) is designed in order to approximate the mechanical torque of the WTS. With this information, the wind speed is calculated based on the optimal mechanical torque point. The NNI approximates in real-time the mechanical torque signal and it does not need off-line training to get its optimal parameter values. In this way, it can really approximates any mechanical torque value with good accuracy. In order to regulate the rotor speed to the optimal speed value, a block-backstepping controller is derived. Uniform asymptotic stability of the tracking error origin is proved using Lyapunov arguments. Numerical simulations and comparisons with a standard passivity based controller are made in order to show the good performance of the proposed adaptive scheme.

Keywords: Wind turbine systems; Wind speed estimation; Nonlinear systems; Artificial neural networks; Backstepping control (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811530166X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:86:y:2016:i:c:p:38-48

DOI: 10.1016/j.renene.2015.07.071

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:38-48