EconPapers    
Economics at your fingertips  
 

Vacuum lifetime and residual gas analysis of parabolic trough receiver

Jinmei Liu, Dongqiang Lei and Qiang Li

Renewable Energy, 2016, vol. 86, issue C, 949-954

Abstract: The vacuum characteristics and lifetime are the key problems of parabolic trough receiver. Heat loss of the receiver will greatly increase when the vacuum has been lost. Especially, if hydrogen is inside the annulus space of the receiver, heat loss at a level is approximately a factor of four higher than the loss for a receiver with good vacuum. Suitable vacuum levels and residual gases should be maintained in the receiver to ensure performances during its projected lifetime. In this paper, the variations of composition and partial pressure of residual gases with temperature in the receiver were measured by a high sensitivity quadrupole mass spectrometer gas analyzer. The effects of residual gas and getter on the vacuum lifetime of receiver were analyzed. The results showed that hydrogen was the main residual gas in the annular space of receiver without getter, and the nitrogen was the main gas released in the receiver with getter. It can be confirmed that the residual gas analysis was a very effective way to predict and evaluate the vacuum lifetime of the receiver.

Keywords: Parabolic trough receiver; Vacuum lifetime; Residual gas analysis; Getter (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115302652
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:86:y:2016:i:c:p:949-954

DOI: 10.1016/j.renene.2015.08.065

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:949-954