Catalytic performance of a novel amphiphilic alkaline ionic liquid for biodiesel production: Influence of basicity and conductivity
Pingbo Zhang,
Yanlei Liu,
Mingming Fan and
Pingping Jiang
Renewable Energy, 2016, vol. 86, issue C, 99-105
Abstract:
Three novel alkaline guanidine ionic liquids as amphiphilic catalysts have been successfully synthesized for two-phase transesterification, which can efficiently improve the catalytic activity for the synthesis of biodiesel. They were characterized by a series of techniques including 1H NMR, thermal stability, electronegativity (DFT calculation), basicity and conductivity. It was demonstrated that 1,1,3,3-trimethyl-2-octyl-guanidine hydroxide(IL3) exhibited better catalytic activity compared with other base guanidine ionic liquid catalysts, which was related to the better basicity and electronegativity of the ILs. The experimental results indicated that catalytic performance was relative to both enough alkaline center and conductivity of ionic liquid catalysts, but the former was a main factor in the catalytic system. The catalytic performance also revealed that optimum catalyst dosage was about 6 wt.%, the appropriate reaction temperature was about 55 °C, the optimum n(Methanol)/n(Soybean Oil) for the biodiesel synthesis was about 15:1 and the suitable reaction time was 4 h on the basis of biodiesel yield of 97%. In addition, the reaction mechanism of the amphiphilic catalyst was illuminated by the interaction between the methoxyl group and the carbonyl group of the triglyceride after activating for two-phase transesterification.
Keywords: Biodiesel; Basic ionic liquid; Transesterification; Basicity; Conductivity (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115302081
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:86:y:2016:i:c:p:99-105
DOI: 10.1016/j.renene.2015.08.008
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().