EconPapers    
Economics at your fingertips  
 

Simulation study of a naturally-ventilated building integrated photovoltaic/thermal (BIPV/T) envelope

Syamimi Saadon, Leon Gaillard, Stéphanie Giroux-Julien and Christophe Ménézo

Renewable Energy, 2016, vol. 87, issue P1, 517-531

Abstract: This paper addresses the simulation of a partially transparency, ventilated PV facade integrated into the envelope of an energy efficient building. Such an arrangement exploits the heat transfer between cavity air, the PV façade and the primary wall of the building for the purpose of PV cooling in summer (with natural convection) and heat recovery in winter (mechanical ventilation). A simplified physical model of the system is proposed for the summer operating configuration, which is more challenging from a numerical perspective. The model describes the active envelop in terms of a simplified geometry, and includes parameters such as density of PV cells, relative coverage of degree of transparency/opaque surfaces, and the ratio of height/width of the double-skin. For a given set of meteorological conditions, the surface and air temperatures, mass flow rate and PV power output are obtained by solving a system of thermal and aerodynamic balance equations. Validation of the model was undertaken using experimental data from a full scale prototype system installed in Toulouse, France as part of the RESSOURCES project (ANR-PREBAT2007). Coupling of the system to a simulated building was achieved with the aid of TRNSYS, and this combined system was evaluated in terms of heating and cooling needs for a range of French climates. It was found that the cooling needs are marginally higher for all locations considered, whereas the impact of the façade on the heating needs is weak as these needs are already low for these all locations.

Keywords: Naturally-ventilated; PV; Double-skin façade; BIPV (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115303694
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:87:y:2016:i:p1:p:517-531

DOI: 10.1016/j.renene.2015.10.016

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:517-531