EconPapers    
Economics at your fingertips  
 

Design of bare and ducted axial marine current turbines

J.-M. Laurens, M. Ait-Mohammed and M. Tarfaoui

Renewable Energy, 2016, vol. 89, issue C, 181-187

Abstract: To convert the kinetic energy of marine current into electricity, the most sensible generator is a horizontal axis turbine. The know-how and the tools used for marine propulsion devices find a new range of applications in this field. An academic panel method code developed for the design of bare and ducted marine propellers was applied to design a marine current turbine. The turbine dimension and the tidal current velocity have been taken to fit the conditions in the Race of Alderney. The wing section theory and the optimum rotor theory based on the blade element momentum were used to obtain the design condition and a first geometry approaching the Betz limit for a bare rotor. The panel method was then used to verify the power coefficient obtained in the presence of the 3D effects and if the cavitation constraints are respected. Subsequently, the same panel code was used to verify if the addition of a duct could improve the power output per unit surface.

Keywords: Marine current turbines; Panel method; Turbine design; Ducted turbine; Marine propellers (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115304912
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:89:y:2016:i:c:p:181-187

DOI: 10.1016/j.renene.2015.11.075

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:89:y:2016:i:c:p:181-187