EconPapers    
Economics at your fingertips  
 

Amorphous silicon solar cells

Roberto Galloni

Renewable Energy, 1996, vol. 8, issue 1, 400-404

Abstract: The perfectioning of the deposition techniques of amorphous silicon over large areas, in particular film homogeneity and the reproducibility of the electro-optical characteristics, has allowed a more accurate study of the most intriguing bane of this material: the degradation under sun-light illumination. Optical band-gap and film thickness engineering have enabled device efficiency to stabilize with only a 10–15% loss in the as-deposited device efficiency. More sophisticated computer simulations of the device have also strongly contributed to achieve the highest stable efficiencies in the case of multijunction devices. Novel use of nanocrystalline thin films offers new possibilities of high efficiency and stability. Short term goals of great economical impact can be achieved by the amorphous silicon/crystalline silicon heterojunction. A review is made of the most innovative achievements in amorphous silicon solar cell design and material engineering.

Keywords: Amorphous silicon; microcrystalline thin film silicon; amorphous silicon solar cells (search for similar items in EconPapers)
Date: 1996
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0960148196888860
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:8:y:1996:i:1:p:400-404

DOI: 10.1016/0960-1481(96)88886-0

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:8:y:1996:i:1:p:400-404