Performance tests of a double-passive μDMFC stack with parallel/dendrite flow field
Shou-Shing Hsieh,
Chin-Chu Ho and
Ling-Ching Hung
Renewable Energy, 2016, vol. 90, issue C, 28-37
Abstract:
We report an experimental study on the effect of different flow fields on the cell performance of a double-passive (both anode/cathode) μDMFC stack. Cell performance measurements were made and analyzed for seven different flow field combinations at the anode/cathode of a passive micro direct methanol fuel cell (μDMFC) stack. An optimum flow field combination, after taking a series of tests under different operating conditions, was obtained. The results show that the conventional parallel type flow field used at the anode with an innovative/new dendrite perforated type of 80° flow field can provide the best power density for both single cell and 8-cell stack which have a power density of 16.9 mA/cm2 at 50 °C and 1 M methanol solution. Moreover, for an 8-cell stack, both the gravimetric and volumetric power densities can be up to 7.4 W/kg and 37.2 W/L, respectively.
Keywords: Dendrite flow field; μDMFC stack; Double-passive (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115305607
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:90:y:2016:i:c:p:28-37
DOI: 10.1016/j.renene.2015.12.056
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().