EconPapers    
Economics at your fingertips  
 

Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines

Xin Jin, Lang Li, Wenbin Ju, Zhaolong Zhang and Xiangang Yang

Renewable Energy, 2016, vol. 90, issue C, 336-351

Abstract: Guaranteeing a robust and reliable wind turbine design under increasingly demanding conditions requires an expert insight into dynamic loading effects of the complete turbine and its subsystems. Traditionally, aeroelastic codes are used to model the wind turbine, where the gearbox is reduced to a few or only one degree of freedom, as bring limitations to describe the dynamic behavior in detail. In this paper, the gearbox dynamic behavior is assessed by means of three multibody models of varying complexity, which are assessed based on modal and dynamic behaviors. This work shows that the fully flexible multibody dynamic model can better reflect the operating condition of the wind turbine. However, due to high calculation precision, the fully flexible multibody dynamic model consumes much times. Therefore, an artificial neural network method is proposed for the prediction of wind turbine dynamic behaviors. The results show that combination of the multibody method and the artificial neural network can reduce the simulation runtime, guaranteeing the accuracy meantime. Therefore, it is of great significance in engineering practice.

Keywords: Wind turbine; Multibody models; Dynamic behavior; Artificial neural network; Gearbox (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116300039
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:90:y:2016:i:c:p:336-351

DOI: 10.1016/j.renene.2016.01.003

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:90:y:2016:i:c:p:336-351